Deep Dive:
Dr. Gregory Worrell’s path towards ultimately engaging in epilepsy research did not follow a direct road. He first trained and worked as a PhD-level physicist before entering medical school and then completed a neurology residency followed by an epilepsy fellowship. It took several additional years to reach his current role as a physician-scientist caring for epilepsy patients while simultaneously maintaining a productive research laboratory. Nevertheless, Dr. Worrell’s unique training in engineering and physics, along with the computational analyses, gave him the expertise required to understand and develop devices to monitor and modulate electrical activity of the brain.
Dr. Worrell credits his mentors, including Dr. Gregory Cascino, also at the Mayo Clinic, and Drs. Marc Dichter (a former advisor to CURE Epilepsy) and Brian Litt (a former CURE Epilepsy grantee), both at the University of Pennsylvania, with influencing his career direction. They provided the model, encouragement, and opportunity for a career as a clinician-scientist. Dr. Worrell’s first research grant was from CURE Epilepsy, and he attributes this critical funding for getting him started in epilepsy research. Even though he was also awarded an NIH training award, he feels that, in many ways, the CURE Epilepsy grant was more important because it introduced him to the community of epilepsy researchers.
Dr. Worrell’s grant from CURE Epilepsy focused on high-frequency oscillations (HFO), brain waves with a frequency of greater than approximately 80 Hz that are often associated with seizure activity in specific regions of the brain [1]. This electrical activity can be detected on an electroencephalogram (EEG), but at the time (approximately 20 years ago), HFOs were rarely observed simply because the range of a typical EEG was limited to no greater than 70 Hz, biased by then-accepted practice [2]. Basic research with animal models, however, had suggested that an epileptic brain exhibits a much wider dynamic range of activity, sometimes out to frequencies greater than 1,000 Hz, and so Dr. Worrell focused his early efforts on broadening the spatial and temporal sampling of brain waves [2-4]. These so-called “wide-band width” recordings have now become standard in the field.
|