Acquired epilepsies can result from brain injury such as head trauma or a lack of oxygen (hypoxia) which can occur following a heart attack or cardiac arrest.[1] Often, there is a period of time between the initial injury and the onset of seizures referred to as the "latent" period. During this time, individuals do not experience seizure activity, but a process called epileptogenesis may be at play to change brain activity, making it more hyperexcitable and prone to seizures. This subset of individuals begins to experience spontaneous seizures and develop epilepsy. Knowledge about changes in the brain after the initial injury may provide clues about ways to prevent seizures. A biomarker is a biological factor such as a protein in the blood or brain electrical activity that can be objectively measured and can act as an indicator or even predictor of a normal or an abnormal condition. In epilepsy, a biomarker could provide information on who is at the highest risk of developing seizures following a brain injury.
Research on biomarkers of acquired epilepsies is challenging, however, due to the inherent complexity of different types of epilepsy, the variability that exists between people at risk for epilepsy, and the challenges of monitoring people acutely after an injury that puts them at risk for epilepsy.[2] Knowing the impact that finding biomarkers for the epilepsies could have on patients and families, CURE Epilepsy funds research in this area. Dr. Edilberto Amorim at the University of California, San Francisco practices at the Zuckerberg San Francisco General Hospital, and received a Taking Flight Award in 2020. Taking Flight Awards fund investigators in the field of the epilepsies relatively early in their careers to enable them to develop a research focus and team independent of their mentor(s). Dr. Amorim’s research involves studying brain activity using electroencephalography (EEG) to predict health outcomes in patients who are critically ill. The goal of his research is to develop data-driven approaches to develop personalized therapies. His work builds on previous studies that have identified several EEG patterns that may serve as biomarkers for the epilepsies.[3]